Microwave-Assisted Synthesis and Antibacterial–Anticancer Evaluation of Sulfadiazine-Imine Derivatives
DOI:
https://doi.org/10.61132/obat.v3i3.1366Keywords:
Antibiotics, Antibacterial activity, Anticancer activity, Cytotoxicity, Microwave synthesisAbstract
This study synthesized novel sulfadiazine-imine derivatives (A1 and A2) using a microwave-assisted method by reacting sulfadiazine with orsellinaldehyde and 2-hydroxy-5-methylbenzaldehyde. The synthesis involved the nucleophilic addition of sulfadiazine to the aldehyde groups, forming imine bonds efficiently under microwave irradiation within 15 minutes. The antibacterial efficacy of the synthesized derivatives was tested against Bacillus subtilis, Streptococcus pneumoniae, and Escherichia coli using agar well diffusion methods. The derivatives A1 and A2 exhibited significantly improved antibacterial activities compared to sulfadiazine, with A1 showing the highest efficacy. Specifically, inhibition zones for Bacillus subtilis reached 26 mm (A1 at 100 mg/mL) compared to 20 mm for sulfadiazine, and similar trends were observed against E. coli and S. pneumoniae. Furthermore, the cytotoxic activity against MCF-7 breast cancer cells revealed that both derivatives demonstrated dose-dependent cytotoxicity. For derivative A1, cell viability decreased to 19% at 320 ppm with an estimated IC50 between 40 and 80 ppm. Derivative A2 showed comparable cytotoxic behavior, with cell viability dropping to 12.6% at the highest concentration tested. The enhanced antibacterial and anticancer properties are attributed to increased lipophilicity and improved cellular penetration conferred by the imine functional group. This research highlights the potential of microwave-assisted derivatization of sulfadiazine to produce compounds with promising therapeutic applications.
Downloads
References
Alani, B. G., Salim, K. S., Mahdi, A. S., & Al-Temimi, A. A. (2024). Sulfonamide derivatives: Synthesis and applications. Int. J. Front. Chem. Pharm. Res, 4, 1-15.
Ali, Z. H., Jber, N. R., & Abbas, A. K. (2023). Synthesis and characterization of new 1, 3-oxazepine compounds from P-Phenylenediamine as insecticide (Aphidoidea). AIP Conference Proceedings,
Brüssow, H. (2024). The antibiotic resistance crisis and the development of new antibiotics. Microbial Biotechnology, 17(7), e14510.
Chen, Y., Wang, Y., Wang, J., Zhou, Z., Cao, S., & Zhang, J. (2023). Strategies of targeting CK2 in drug discovery: challenges, opportunities, and emerging prospects. Journal of Medicinal Chemistry, 66(4), 2257-2281.
Chinemerem Nwobodo, D., Ugwu, M. C., Oliseloke Anie, C., Al‐Ouqaili, M. T., Chinedu Ikem, J., Victor Chigozie, U., & Saki, M. (2022). Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace. Journal of clinical laboratory analysis, 36(9), e24655.
Christensen, S. B. (2021). Drugs that changed society: History and current status of the early antibiotics: Salvarsan, sulfonamides, and β-lactams. Molecules, 26(19), 6057.
Coanda, M., Limban, C., Draghici, C., Ciobanu, A.-M., Grigore, G. A., Popa, M., Stan, M., Larion, C., Avram, S., & Mares, C. (2024). Current Perspectives on Biological Screening of Newly Synthetised Sulfanilamide Schiff Bases as Promising Antibacterial and Antibiofilm Agents. Pharmaceuticals, 17(4), 405.
Elangovan, N., Sowrirajan, S., Arumugam, N., Almansour, A. I., Altaf, M., & Mahalingam, S. M. (2024). Synthesis, vibrational analysis, absorption and emission spectral studies, topology and molecular docking studies on sulfadiazine derivative. ChemistrySelect, 9(10), e202303582.
Elangovan, N., Thomas, R., Sowrirajan, S., & Irfan, A. (2021). Synthesis, spectral and quantum mechanical studies and molecular docking studies of Schiff base (E) 2-hydroxy-5-(((4-(N-pyrimidin-2-yl) sulfamoyl) phenyl) imino) methyl benzoic acid from 5-formyl salicylic acid and sulfadiazine. Journal of the Indian Chemical Society, 98(10), 100144.
Elkanzi, N. A., Alsirhani, A. M., Ali, A. M., Abdou, A., & Alali, I. (2025). Design, characterization, antioxidant activity, and molecular docking study of sulfadiazine derivative-based Ni (II) and Cu (II) complexes. Journal of Molecular Liquids, 126937.
Gomaa, M., Gad, W., Hussein, D., Pottoo, F. H., Tawfeeq, N., Alturki, M., Alfahad, D., Alanazi, R., Salama, I., & Aziz, M. (2024). Sulfadiazine exerts potential anticancer effect in HepG2 and MCF7 cells by inhibiting TNFα, IL1b, COX-1, COX-2, 5-LOX gene expression: evidence from in vitro and computational studies. Pharmaceuticals, 17(2), 189.
Hassan, S. A., Aziz, D. M., Abdullah, M. N., Bhat, A. R., Dongre, R. S., Ahmed, S., Rahiman, A. K., Hadda, T. B., Berredjem, M., & Jamalis, J. (2023). Design and synthesis of oxazepine derivatives from sulfonamide Schiff bases as antimicrobial and antioxidant agents with low cytotoxicity and hemolytic prospective. Journal of Molecular Structure, 1292, 136121.
Hassan, S. A., Aziz, D. M., Kader, D. A., Rasul, S. M., Muhamad, M. A., & Muhammedamin, A. A. (2024). Design, synthesis, and computational analysis (molecular docking, DFT, MEP, RDG, ELF) of diazepine and oxazepine sulfonamides: Biological evaluation for in vitro and in vivo anti-inflammatory, antimicrobial, and cytotoxicity predictions. Molecular Diversity, 1-23.
Jawad, A. A., Jber, N. R., Rasool, B. S., & Abbas, A. K. (2023). Tetrazole derivatives and role of tetrazole in medicinal chemistry: An article review. Al-Nahrain Journal of Science, 26(1), 1-7.
Mohammed, T. T., Obaid, A. H., Hammeed, G. F., & Abbas, A. K. (2024). Modification of Sulfadiazine Antibacterial to Promising Anticancer Schiff Base Derivatives: Synthesis and in Vitro Studies. The International Science of Health Journal, 2(3), 01-10.
Oreshko, V. V., Kovaleva, K. S., Mordvinova, E. D., Yarovaya, O. I., Gatilov, Y. V., Shcherbakov, D. N., Bormotov, N. I., Serova, O. A., Shishkina, L. N., & Salakhutdinov, N. F. (2022). Synthesis and antiviral properties of camphor-derived iminothiazolidine-4-ones and 2, 3-dihydrothiazoles. Molecules, 27(15), 4761.
Ovung, A., & Bhattacharyya, J. (2021). Sulfonamide drugs: Structure, antibacterial property, toxicity, and biophysical interactions. Biophysical reviews, 13(2), 259-272.
Rohilla, S., & Sharma, D. (2023). Sulfonamides, quinolones, antiseptics, and disinfectants. In Medicinal Chemistry of Chemotherapeutic Agents (pp. 21-63). Elsevier.
Soliman, A.-Q. S., Abdel-Latif, S. A., Abdel-Khalik, S., Abbas, S. M., & Ahmed, O. M. (2024). Design, synthesis, structural characterization, molecular docking, antibacterial, anticancer activities, and density functional theory calculations of novel MnII, CoII, NiII, and CuII complexes based on pyrazolone-sulfadiazine azo-dye ligand. Journal of Molecular Structure, 1318, 139402.
Srinithi, S., Arumugam, B., Chen, S.-M., Annamalai, S., & Ramaraj, S. K. (2023). Synthesis and characterization of pyrochlore-type lanthanum cerate nanoparticles: Electrochemical determination of antibiotic drug sulfadiazine in biological and environmental samples. Materials Chemistry and Physics, 296, 127244.
Zheng, H., Zhang, Y., Li, S., Feng, X., Wu, Q., Leong, Y. K., & Chang, J.-S. (2023). Antibiotic sulfadiazine degradation by persulfate oxidation: Intermediates dependence of ecotoxicity and the induction of antibiotic resistance genes. Bioresource technology, 368, 128306.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 OBAT: Jurnal Riset Ilmu Farmasi dan Kesehatan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.