Aktivitas Farmakologi Senyawa Aktif yang Diisolasi dari Tumbuhan Obat
DOI:
https://doi.org/10.61132/obat.v3i1.1070Keywords:
Analgesic, Anticancer, Anticholinergic, Antiplatelet, SympathomimeticAbstract
Traditional medicine is currently developing rapidly, especially those based on plants. Active plant compounds are the main basis for the development of new drugs, which after further research, can be commercialized and used in pharmaceutical treatment. This review was conducted to identify the pharmacological effects of active drug compounds isolated from medicinal plants by conducting a literature study. The results of the literature review contained 37 articles that met the inclusion criteria. Until now, there are several active drug compounds from plants that are sold commercially in the form of modern drugs. Some of the pharmacological effects found are cardiac glycosides, anticholinergics, antiplatelets, analgesics, anticancer, sympathomimetics and antimalarials. This search shows that natural materials are still used as a potential source of active drug compounds, thus encouraging research to find new active compounds from medicinal plants to overcome diseases in the future.
Downloads
References
Almagro, L., Fernández-Pérez, F., & Pedreño, M. A. (2025). Indole alkaloids from Catharanthus roseus: Bioproduction and their effect on human health. Molecules, 20(2), 2973–3000.
Arif, H., & Aggarwal, S. (2023). Asam salisilat (Aspirin). National Center for Biotechnology Information. https://www.ncbi.nlm.nih.gov/books/NBK519032/#
Avetisov, S. E., Fisenko, V. P., Zhuravlev, A. S., & Avetisov, K. S. (2018). Atropine use for the prevention of myopia progression. Vestnik Oftalmologii, 134(4), 84–90.
Awosika, A. O., Below, J., & Das, J. M. (2023). Vincristine. National Center for Biotechnology Information. https://www.ncbi.nlm.nih.gov/books/NBK537122/
Awosika, A. O., Farrar, M. C., & Jacobs, T. F. (2023). Paclitaxel. National Center for Biotechnology Information. https://www.ncbi.nlm.nih.gov/books/NBK536917/
Birat, K., Binsuwaidan, R., Siddiqi, T. O., Mir, S. R., Alshammari, N., Adnan, M., et al. (2022). Report on vincristine-producing endophytic fungus Nigrospora zimmermanii from leaves of Catharanthus roseus. Metabolites, 12(11), 1119.
Brook, K., Bennett, J., & Desai, S. P. (2017). The chemical history of morphine: An 8000-year journey, from resin to de-novo synthesis. Journal of Anesthesia History, 3(2), 50–55.
Chaachouay, N., & Zidane, L. (2024). Plant-derived natural products: A source for drug discovery and development. Drugs and Drug Candidates, 3(1), 84–207.
David, M. N. V., & Shetty, M. (2023). Digoxin. National Center for Biotechnology Information. https://www.ncbi.nlm.nih.gov/books/NBK556025/
Desborough, M. J. R., & Keeling, D. M. (2017). The aspirin story: From willow to wonder drug. British Journal of Haematology, 177(5), 674–683.
DrugBank. (2025). Quinine. DrugBank. https://go.drugbank.com/drugs/DB00468
Gheorghiev, M. D., Hosseini, F., Moran, J., & Cooper, C. E. (2018). Effects of pseudoephedrine on parameters affecting exercise performance: A meta-analysis. Sports Medicine Open, 4, 44.
Głowacka, K., & Wiela-Hojeńska, A. (2021). Pseudoephedrine—Benefits and risks. International Journal of Molecular Sciences, 22(10), 5146.
González-Orozco, C. E., Guillén, E. G., & Cuvi, N. (2023). Changes of Cinchona distribution over the past two centuries in the northern Andes. Royal Society Open Science, 10(4), 230229.
Haghjooy-Javanmard, S., Ghasemi, A., Laher, I., Zarrin, B., Dana, N., Vaseghi, G. (2018). Influence of morphine on TLR4/NF-kB signaling pathway of MCF-7 cells. Bratisl Lek Listy, 119(4), 229–233.
Harefa, D. (n.d.). Pemanfaatan hasil tanaman sebagai tanaman obat keluarga (TOGA). Madani: Indonesian Journal of Civil Society, 2(2), 28–36.
Hiyama, H., Ozawa, A., Makino, B., Yoshioka, Y., & Ohsawa, R. (2021). Stability and reproducibility of Ephedra sinica ephedrine alkaloid content and terrestrial stem dry weight. Biological and Pharmaceutical Bulletin, 44(11), 1781–1789.
Hiyama, H., Yoshioka, Y., & Ohsawa, R. (2023). Evaluation of the influence of genetic and environmental factors on the ephedrine alkaloids content of Ephedra sinica. Biological and Pharmaceutical Bulletin, 46(12), 1692–1698.
Ikatan Apoteker Indonesia. (2021). Informasi spesialis obat. Jakarta: PT Pharma Tekno Solusi.
Kothari, A., Hittelman, W., & Chambers, T. (2016). Cell cycle-dependent mechanisms underlie vincristine-induced death of primary acute lymphoblastic leukemia cells. Cancer Research, 76(12), 3553–3561.
Kumar, S., Singh, B., & Singh, R. (2022). Catharanthus roseus (L.) G. Don: A review of its ethnobotany, phytochemistry, ethnopharmacology, and toxicities. Journal of Ethnopharmacology, 284, 114647.
Labanca, F., Ovesná, J., & Milella, L. (2018). Papaver somniferum L. taxonomy, uses, and new insight in poppy alkaloid pathways. Phytochemistry Reviews, 17(3), 853–871.
Lautie, E., Russo, O., Ducrot, P., & Boutin, J. A. (2020). Unraveling plant natural chemical diversity for drug discovery purposes. Frontiers in Pharmacology, 11, 397.
Leite Junior, J. B., de Mello Bastos, J. M., Samuels, R. I., Carey, R. J., & Carrera, M. P. (2019). Reversal of morphine conditioned behavior by an anti-dopaminergic post-trial drug treatment during re-consolidation. Behavioral Brain Research, 359, 771–782.
Martino, E., Casamassima, G., Castiglione, S., Cellupica, E., Pantalone, S., Papagni, F., et al. (2018). Vinca alkaloids and analogues as anti-cancer agents: Looking back, peering ahead. Bioorganic and Medicinal Chemistry Letters, 28(17), 2816–2826.
McLendon, K., & Preuss, C. V. (2023). Atropin. National Center for Biotechnology Information. https://www.ncbi.nlm.nih.gov/books/NBK470551/
Montinari, M. R., Minelli, S., & De Caterina, R. (2019). The first 3500 years of aspirin history from its roots – A concise summary. Vascular Pharmacology, 113, 1–8.
Murphy, P. B., Bechmann, S., & Barrett, M. J. (2023). Morphine. National Center for Biotechnology Information. https://www.ncbi.nlm.nih.gov/books/NBK526115/
Nazhand, A., Durazzo, A., Lucarini, M., Mobilia, M. A., Omri, B., Santini, A. (2020). Rewiring cellular metabolism for heterologous biosynthesis of Taxol. Natural Product Research, 34(1), 110–121.
Patocka, J., Nepovimova, E., Wu, W., & Kuca, K. (2020). Digoxin: Pharmacology and toxicology—a review. Environmental Toxicology and Pharmacology, 79, 103400.
Pham, H. N. T., Vuong, Q. V., Bowyer, M. C., & Scarlett, C. J. (2020). Phytochemicals derived from Catharanthus roseus and their health benefits. Technologies, 8(4), 80.
Ren, Y., Ribas, H. T., Heath, K., Wu, S., Ren, J., Shriwas, P., Chen, X., Johnson, M. E., Cheng, X., Burdette, J. E., & Kinghorn, A. D. (2020). Na+/K+-ATPase-targeted cytotoxicity of (+)-digoxin and several semisynthetic derivatives. Journal of Natural Products, 83(3), 638–648.
Schauer, S. G., Naylor, J. F., Maddry, J. K., Hinojosa-Laborde, C., & April, M. D. (2019). Trends in prehospital analgesia administration by US forces from 2007 through 2016. Prehospital Emergency Care, 23(2), 271–276.
Setiawan, A., Eosina, P., Primasari, D., & Ridwan, T. (2018). Sistem informasi pengelola tanaman obat (SITANO). In Prosiding SINTAK; 2018 November 14; Bogor, Indonesia. Indonesia: Universitas Ibn Khaldun Bogor.
Shufyani, F., Barus, B. R., Maretha, D. E., Banne, Y., Harnis, Z. E., Emelda, et al. (2024). Herbal Medicine. Jawa Tengah: PT Media Pustaka Indo.
Singhai, H., Rathee, S., Jain, S. K., & Patil, U. K. (2024). The potential of natural products in the management of cardiovascular disease. Current Pharmaceutical Design, 30(8), 624–638.
Smulyan, H. (2018). The beat goes on: The story of five ageless cardiac drugs. American Journal of Medical Sciences, 356(5), 441–450.
Statler, A. K., Maani, C. V., & Kohli, A. (2023). Ephedrine. National Center for Biotechnology Information. https://www.ncbi.nlm.nih.gov/books/NBK547661/
Taylor, C., Crosby, I., Yip, V., Maguire, P., Pirmohamed, M., & Turner, R. M. (2020). A review of the important role of CYP2D6 in pharmacogenomics. Genes (Basel), 11(11), 1295.
Yuan, H., Ma, Q., Ye, L., & Piao, G. (2016). The traditional medicine and modern medicine from natural products. Molecules, 21(5), 559.
Zahid, Z., Khan, S., Nadeem, F., & Azeem, M. W. (2015). The review of power of poppy: Harnessing benefits of nature’s most dangerous plant. International Scientific Organization, 8, 56–64.
Zeng, L., Zhang, Q., Jiang, C., Zheng, Y., Zuo, Y., Qin, J., et al. (2021). Development of Atropa belladonna L. plants with high-yield hyoscyamine and without its derivatives using the CRISPR/Cas9 system. International Journal of Molecular Sciences, 22(4), 1731.
Zhu, L., & Chen, L. (2019). Progress in research on paclitaxel and tumor immunotherapy. Cellular and Molecular Biology Letters, 24, 40.
Zimmermann, P., & Curtis, N. (2018). The effect of aspirin on antibiotic susceptibility. Expert Opinion on Therapeutic Targets, 22(11), 967–972.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 OBAT: Jurnal Riset Ilmu Farmasi dan Kesehatan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.