Review Of "Chasing Resistance: New Antibiotics For A Changing Landscape
DOI:
https://doi.org/10.61132/obat.v2i4.989Keywords:
Chasing Resistance , Antibiotics, Antimicrobial resistance, Changing LandscapeAbstract
Antimicrobial resistance (AMR) is an age-old biological phenomenon, as evidenced by its evolutionary history and abundance of environmental immunity Antibiotics used by humans contributes to resistance to acquired disease, a public health issue that drives the selection of resistance genes. A.M.R. One of the most important strategies to combat AMR is the search for new antibiotics. During the 1980s, existing products were either enhanced or modified in antibiotics currently on the market. The World Health Organization (WHO) warns of limited new candidates and highly characterizes the current pipeline. After careful analysis of preclinical and therapeutic pipelines, it seems expected that very few new antibiotics will enter the market in the coming years . Most of these candidates do not meet the new standards required to adequately address the growing threat of antimicrobial resistance (AMR).The key principles to cope with the rapidly emerging AMR are diversity and innovation which are done. R&D efforts should address new antibiotic resistance. Although there is promising potential to change the dynamics between the spread of AMR, antibiotic reserves, and meeting new lead standards, we examine the historical context and challenges associated with drug a kills bacteria detection, and various other processes. Let us describe the proposed methods of revitalizing the pipeline.
Downloads
References
Aslam, B., Wang, W., Arshad, M. I., Khurshid, M., Muzammil, S., Rasool, M. H., Nisar, M. A., Alvi, R. F., Aslam, M. A., Qamar, M. U., et al. (2018). Antibiotic resistance: A rundown of a global crisis. Infectious Diseases and Therapy, 11, 1645–1658. https://doi.org/10.2147/IDR.S173867
Barlow, M., & Hall, B. G. (2002). Phylogenetic analysis shows that the OXA beta-lactamase genes have been on plasmids for millions of years. Journal of Molecular Evolution, 55, 314–321. https://doi.org/10.1007/s00239-002-2328-y
Clift, C. (2019). Review of Progress on Antimicrobial Resistance: Background and Analysis. The Royal Institute of International Affairs.
Donadio, S., Maffioli, S., Monciardini, P., Sosio, M., & Jabes, D. (2010). Antibiotic discovery in the twenty-first century: Current trends and future perspectives. Journal of Antibiotics, 63, 423–430. https://doi.org/10.1038/ja.2010.62
Dutescu, I. A., & Hillier, S. A. (2021). Encouraging the development of new antibiotics: Are financial incentives the right way forward? A systematic review and case study. Infectious Diseases and Therapy, 14, 415–434. https://doi.org/10.2147/IDR.S287792
Fajardo, A., Martinez-Martin, N., Mercadillo, M., Galan, J. C., Ghysels, B., Matthijs, S., Cornelis, P., Wiehlmann, L., Tummler, B., Baquero, F., et al. (2008). The neglected intrinsic resistome of bacterial pathogens. PLoS ONE, 3, e1619. https://doi.org/10.1371/journal.pone.0001619
Getahun, H., Smith, I., Trivedi, K., Paulin, S., & Balkhy, H. H. (2020). Tackling antimicrobial resistance in the COVID-19 pandemic. Bulletin of the World Health Organization, 98, 442. https://doi.org/10.2471/BLT.20.268573
Jackson, N., Czaplewski, L., & Piddock, L. J. V. (2018). Discovery and development of new antibacterial drugs: Learning from experience? Journal of Antimicrobial Chemotherapy, 73, 1452–1459. https://doi.org/10.1093/jac/dky019
Jacoby, G. A. (2017). Antimicrobial Drug Resistance. Springer.
Joshi, M. P., Chintu, C., Mpundu, M., Kibuule, D., Hazemba, O., Andualem, T., Embrey, M., Phulu, B., & Gerba, H. (2018). Multidisciplinary and multisectoral coalitions as catalysts for action against antimicrobial resistance: Implementation experiences at national and regional levels. Global Public Health, 13, 1781–1795. https://doi.org/10.1080/17441692.2018.1449230
Kumar, M., Sarma, D. K., Shubham, S., Kumawat, M., Verma, V., Nina, P. B., Jp, D., Kumar, S., Singh, B., & Tiwari, R. R. (2021). Futuristic non-antibiotic therapies to combat antibiotic resistance: A review. Frontiers in Microbiology, 12, 609459. https://doi.org/10.3389/fmicb.2021.609459
Lugli, G. A., Milani, C., Mancabelli, L., Turroni, F., Ferrario, C., Duranti, S., van Sinderen, D., & Ventura, M. (2017). Ancient bacteria of the Otzi’s microbiome: A genomic tale from the Copper Age. Microbiome, 5, 5. https://doi.org/10.1186/s40168-016-0221-y
Lv, J., Deng, S., & Zhang, L. (2021). A review of artificial intelligence applications for antimicrobial resistance. Biosafety and Health, 3, 22–31. https://doi.org/10.1016/j.bsheal.2020.08.003
Majumder, M. A. A., Rahman, S., Cohall, D., Bharatha, A., Singh, K., Haque, M., Gittens-St Hilaire, M. (2020). Antimicrobial Stewardship: Fighting Antimicrobial Resistance and Protecting Global Public Health. Infectious Diseases and Therapy, 13, 4713–4738. https://doi.org/10.2147/IDR.S290835
Martínez, J. L. (2008). Antibiotics and antibiotic resistance genes in natural environments. Science, 321, 365–367. https://doi.org/10.1126/science.1159483
Mendelson, M., & Matsoso, M. P. (2015). The World Health Organization Global Action Plan for antimicrobial resistance. South African Medical Journal, 105, 325. https://doi.org/10.7196/SAMJ.9644
Miethke, M., Pieroni, M., Weber, T., Bronstrup, M., Hammann, P., Halby, L., Arimondo, P. B., Glaser, P., Aigle, B., Bode, H. B., et al. (2021). Towards the sustainable discovery and development of new antibiotics. Nature Reviews Chemistry, 5, 726–749. https://doi.org/10.1038/s41570-021-00313-1
Nicholson, A., Pavlin, J., Buckley, G., & Amponsah, E. (2020). Exploring the Frontiers of Innovation to Tackle Microbial Threats: Proceedings of a Workshop. National Academies Press. https://doi.org/10.17226/25656
Perry, J., Waglechner, N., & Wright, G. (2016). The prehistory of antibiotic resistance. Cold Spring Harbor Perspectives in Medicine, 6, a025197. https://doi.org/10.1101/cshperspect.a025197
Plackett, B. (2020). Why big pharma has abandoned antibiotics. Nature, 586, S50–S52. https://doi.org/10.1038/d41586-020-02884-3
Simpkin, V. L., Renwick, M. J., Kelly, R., & Mossialos, E. (2017). Incentivising innovation in antibiotic drug discovery and development: Progress, challenges, and next steps. Journal of Antibiotics, 70, 1087–1096. https://doi.org/10.1038/ja.2017.124
Theuretzbacher, U., Gottwalt, S., Beyer, P., Butler, M., Czaplewski, L., Lienhardt, C., Moja, L., Paul, M., Paulin, S., Rex, J. H., et al. (2019). Analysis of the clinical antibacterial and antituberculosis pipeline. Lancet Infectious Diseases, 19, e40–e50. https://doi.org/10.1016/S1473-3099(18)30513-9
Theuretzbacher, U., Outterson, K., Engel, A., & Karlen, A. (2020). The global preclinical antibacterial pipeline. Nature Reviews Microbiology, 18, 275–285. https://doi.org/10.1038/s41579-019-0288-0
Van Goethem, M. W., Pierneef, R., Bezuidt, O. K. I., Van De Peer, Y., Cowan, D. A., & Makhalanyane, T. P. (2018). A reservoir of 'historical' antibiotic resistance genes in remote pristine Antarctic soils. Microbiome, 6, 40. https://doi.org/10.1186/s40168-018-0424-5
Wilson, L. A., Rogers, V. K., Fafard, P., Viens, A. M., & Hoffman, S. J. (2020). Lessons learned from COVID-19 for the post-antibiotic future. Global Health, 16, 94. https://doi.org/10.1186/s12992-020-00623-x
World Health Organization. (2020). Antibacterial Agents in Clinical and Preclinical Development: An Overview and Analysis. WHO. https://www.who.int/publications/i/item/9789240021303
World Health Organization. (2020). Critically Important Antimicrobials for Human Medicine, 6th Revision. WHO. https://www.who.int/publications/i/item/9789241515528
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 OBAT: Jurnal Riset Ilmu Farmasi dan Kesehatan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.