The Impact of the adeE and adeY Genes on the Antibiotic Resistance Mechanisms of Acinetobacter baumannii
DOI:
https://doi.org/10.61132/obat.v3i3.1286Keywords:
isolates, Acinetobacter, biofilmAbstract
Current study identified Acinetobacter baumannii isolates from burn wound samples using biochemical and
molecular techniques focusing on the rpoB gene. All isolates showed variable virulence factors, including
biofilm formation (100%), gelatinase activity (90%), and mannose-resistant hemagglutination (72%). Antibiotic
susceptibility testing revealed high resistance rates to Rifampin (96%), Tetracycline (92%), and third-
generation cephalosporins such as Cefotaxime (73%) and Ceftriaxone (81%). Lower resistance rates were
observed for Levofloxacin (31%) and Gatifloxacin (27%), suggesting potential effectiveness.
PCR analysis confirmed the presence of AdeE and AdeY efflux pump genes in several isolates. However,
statistical analysis, including Chi-square/Fisher’s tests and t-tests, demonstrated no significant correlation
between the presence of these genes and antibiotic resistance patterns (p > 0.05). This indicates that while
efflux pump genes are present, their presence alone does not predict antibiotic resistance in the tested isolates.
The findings highlight the complex mechanisms of resistance in A. baumannii and the need for continued
surveillance and molecular diagnostics to guide effective infection control.
Downloads
References
Agyepong, N., Fordjour, F., & Owusu-Ofori, A. (2023). Multidrug-resistant Acinetobacter baumannii in healthcare settings in Africa. Frontiers in Tropical Diseases, 4, 1110125. https://www.frontiersin.org
Agyepong, N., Govinden, U., & Essack, S. Y. (2023). Antibiotic resistance trends in Acinetobacter baumannii: A global review. Journal of Global Antimicrobial Resistance, 32, 45–54.
Ahmed, H. M., Salih, M. A., & Yaseen, A. A. (2024). ESBL-producing Escherichia coli and antibiotic resistance in clinical isolates. Journal of Infection and Public Health, 17(1), 21–30.
Anand, S. S., Nair, B. G., Nair, S. S., & Pai, J. G. (2025). Proteases from marine endophyte, Bacillus subtilis ULB16: Unlocking the industrial potential of a marine-derived enzyme source. Biocatalysis and Agricultural Biotechnology, 103503. https://doi.org/10.1016/j.bcab.2025.103503
Asha, M. N., Chowdhury, M. S. R., Hossain, H., Rahman, M. A., Emon, A. A., Tanni, F. Y., Islam, M. R., Hossain, M. M., & Rahman, M. M. (2024). Antibacterial potential of lactic acid bacteria isolated from raw cow milk in Sylhet district, Bangladesh: A molecular approach. Veterinary Medicine and Science, 10(3), e1463. https://www.wiley.com
Baker, L. J., Thompson, R. D., & Cooper, C. J. (2022). Extended-spectrum beta-lactamase enzymes and resistance in E. coli. Clinical Microbiology Reviews, 35(4), e00123-21.
Chinemerem, E. N., Ogu, C. M., & Nwankwo, T. O. (2022). The rising threat of antibiotic resistance in urinary pathogens: A study on E. coli. African Journal of Clinical Microbiology, 29(2), 88–96.
de Oliveira, P. A. A., Baboghlian, J., Ramos, C. O. A., Mançano, A. S. F., Porcari, A. M., Girardello, R., & Ferraz, L. F. C. (2024). Selection and validation of reference genes suitable for gene expression analysis by reverse transcription quantitative real-time PCR in Acinetobacter baumannii. Scientific Reports, 14(1), 3830. https://www.nature.com
De, R., Kumar, A., & Singh, N. (2024). Molecular identification of Acinetobacter species using rpoB gene sequencing. Journal of Medical Microbiology, 73(2), 115–123.
Esmaeili, Z., Shahsavar, S. K., & Ghazvini, K. (2025). A systematic review of the avian antibody (IgY) therapeutic effects on human bacterial infections over the decade. Antibody Therapeutics. https://academic.oup.com
Flemming, H.-C., van Hullebusch, E. D., Neu, T. R., Nielsen, P. H., Seviour, T., Stoodley, P., Wingender, J., & Wuertz, S. (2023). The biofilm matrix: Multitasking in a shared space. Nature Reviews Microbiology, 21(2), 70–86. https://www.soton.ac.uk
Gordon, N. C., & Wareham, D. W. (2010). Multidrug-resistant Acinetobacter baumannii: Mechanisms of virulence and resistance. International Journal of Antimicrobial Agents, 35, 219–226.
Guan, L., Beig, M., Wang, L., Navidifar, T., Moradi, S., Tabaei, F. M., Teymouri, Z., Moghadam, M. A., & Sedighi, M. (2024). Global status of antimicrobial resistance in clinical Enterococcus faecalis isolates: Systematic review and meta-analysis. Annals of Clinical Microbiology and Antimicrobials, 23(1), 80. https://www.springer.com
He, X., Lu, F., Yuan, F., Jiang, D., Zhao, P., & Zhu, J. (2015). Biofilm formation caused by clinical Acinetobacter baumannii isolates is associated with overexpression of the AdeFGH efflux pump. Antimicrobial Agents and Chemotherapy, 59, 4817.
Huang, L., Wu, C., Gao, H., Xu, C., Dai, M., Huang, L., Hao, H., Wang, X., & Cheng, G. (2022). Bacterial multidrug efflux pumps at the frontline of antimicrobial resistance: An overview. Antibiotics, 11(4), 520. https://www.mdpi.com
Huang, Y. L., Wang, S. H., & Liu, H. M. (2024). Mechanisms of beta-lactam resistance in Acinetobacter baumannii: The role of efflux pumps and PBPs. Journal of Antimicrobial Chemotherapy, 79(1), 10–19.
Huang, Y. W., Shu, H. Y., & Lin, G. H. (2024). Gene expression of ethanol and acetate metabolic pathways in the Acinetobacter baumannii EmaSR regulon. Microorganisms. https://www.mdpi.com
Hurton, D., Hleba, L., Petrová, J., Laho, M., Koren, J., & Liptáková, A. (2025). Effect of temperature on the activity of efflux pumps in selected species of human opportunistic bacterial pathogens. Memórias do Instituto Oswaldo Cruz, 120, e240162. https://www.scielo.br
Ibrahim, M. E., Al-Shahrani, H., & Al-Qahtani, A. A. (2021). Global trends in multidrug-resistant Acinetobacter baumannii. Infection and Drug Resistance, 14, 387–402.
Ibrahim, S., Al-Saryi, N., Al-Kadmy, I. M. S., & Aziz, S. N. (2021). Multidrug-resistant Acinetobacter baumannii as an emerging concern in hospitals. Molecular Biology Reports. https://www.springer.com
Javadi, K. (2024). Acinetobacter baumannii in the healthcare facility setting. Avicenna Journal of Clinical Microbiology and Infection. https://www.umsha.ac.ir
Javadi, M. (2024). Common clinical manifestations of Acinetobacter baumannii in nosocomial settings. Iranian Journal of Clinical Infectious Diseases, 30(1), 59–67.
Lee, C. R., Lee, J. H., Park, M., Park, K. S., Bae, I. K., & Kim, Y. B. (2017). Biology of Acinetobacter baumannii: Pathogenesis, antibiotic resistance mechanisms, and prospective treatment options. Frontiers in Cellular and Infection Microbiology, 7, 55.
Li, S., Jiang, G., Wang, S., Wang, M., Wu, Y., Zhang, J., Liu, X., et al. (2025). Emergence and global spread of a dominant multidrug-resistant clade within Acinetobacter baumannii. Nature Communications, 16(1), 2787. https://www.nature.com
Liu, J., Zhang, Y., & Chen, X. (2025). Detection of antibiotic resistance genes AdeE and AdeY in Acinetobacter baumannii using PCR. Molecular Biology Reports, 52(4), 204–211.
Liu, S., Shang, E., Liu, J., Wang, Y., Bolan, N., Kirkham, M. B., & Li, Y. (2022). What have we known so far for fluorescence staining and quantification of microplastics: A tutorial review. Frontiers of Environmental Science & Engineering, 16, 1–14. https://www.springer.com
Liu, X., Yu, E., Zhao, Q., Han, H., & Li, Q. (2025). Enzymes as green and sustainable tools in DNA data storage. Chemical Communications. https://pubs.rsc.org
Louws, F. J., Mendez, R. L., & Carter, T. M. (2024). Molecular confirmation of Acinetobacter baumannii via rpoB gene amplification. Diagnostic Microbiology and Infectious Disease, 100(1), 103–110.
Louws, F. J., Schneider, M., & de Bruijn, F. J. (2024). Assessing genetic diversity of microbes using repetitive sequence-based PCR (rep-PCR). In Environmental Applications of Nucleic Acid Amplification Technology (pp. 63–94). CRC Press.
Lucidi, M., Visaggio, D., Migliaccio, A., Capecchi, G., Visca, P., Imperi, F., & Zarrilli, R. (2024). Pathogenicity and virulence of Acinetobacter baumannii: Factors contributing to the fitness in healthcare settings and the infected host. Virulence, 15(1), 2289769. https://www.tandfonline.com
Maybin, M., Ranade, A. M., Schombel, U., Gisch, N., Mamat, U., & Meredith, T. C. (2024). IS1-mediated chromosomal amplification of the arn operon leads to polymyxin B resistance in Escherichia coli B strains. mBio, 15(7), e00634-24. https://www.asm.org
Maybin, T. R., Ellis, R. A., & Godfrey, R. (2024). PCR-based detection of multidrug-resistant Acinetobacter baumannii in burn units. Journal of Clinical Pathology, 77(3), 190–197.
Mengistu, A. G., Tulu, K. D., & Alemayehu, D. H. (2023). Bacterial isolation and antibiotic susceptibility patterns among clinical specimens. Ethiopian Journal of Health Sciences, 33(1), 75–84.
Mengistu, D. A., Alemu, A., Abdukadir, A. A., Husen, A. M., Ahmed, F., & Mohammed, B. (2023). Incidence of urinary tract infection among patients: Systematic review and meta-analysis. INQUIRY: The Journal of Health Care Organization, Provision, and Financing, 60, 00469580231168746. https://www.sagepub.com
Montes-Robledo, A., Baena-Baldiris, D., & Baldiris-Avila, R. (2024). Reduction of Cr(VI) by planktonic cells and biofilm of Acinetobacter sp. (ADHR1) isolated from electroplating wastewater. Environmental Technology & Innovation, 33, 103521. https://www.sciencedirect.com
Montes-Robledo, D. J., Sanchez-Gomez, M. J., & Velasquez, A. M. (2024). Antimicrobial susceptibility testing for burn-related bacterial infections: A clinical update. Burns & Trauma, 12(1), 33–41.
Moon, H. J., Park, S. H., & Lee, Y. M. (2025). Phenotypic characteristics and thermal preferences of Acinetobacter baumannii from clinical isolates. Clinical Microbiology Insights, 11(1), 34–42.
Moon, U. R., Durge, A. A., & Wadhai, V. S. (2025). Bioremediation of hexavalent chromium contaminated soil using chromium-tolerant Bacillus strains isolated from agricultural sites. International Journal of Ecology and Environmental Sciences. https://nieindia.org
Motzer, C., Wiedmann, M., & Martin, N. (2025). Non-sporeforming thermoduric bacteria vary considerably in thermal resistance in milk media between strains from the same genus. Journal of Dairy Science. https://www.sciencedirect.com
Murugaiyan, J., Palpandi, K., Das, V., & Kumar, A. (2024). Rapid species differentiation and typing of Acinetobacter baumannii. German Journal of Veterinary Research. https://www.gmpc-akademie.de
Murugaiyan, J., Prasad, M., & Nair, P. S. (2024). Acinetobacter baumannii: Emerging global threat in healthcare-associated infections. Global Journal of Medical Research, 18(2), 67–76.
Nguyen, L. T., & Joshi, S. D. (2021). Pathogenesis and resistance profiles of Acinetobacter baumannii. Infection Control & Hospital Epidemiology, 42(9), 1057–1064.
Nguyen, M., & Joshi, S. G. (2021). Carbapenem resistance in Acinetobacter baumannii, and their importance in hospital‐acquired infections: A scientific review. Journal of Applied Microbiology. https://www.wiley.com
Pallavi, P., Girigoswami, K., Harini, K., Gowtham, P., Thirumalai, A., & Girigoswami, A. (2025). Theranostic dye entrapped in an optimized blended-polymer matrix for effective photodynamic inactivation of diseased cells. Naunyn-Schmiedeberg's Archives of Pharmacology, 398(1), 867–880.
Peleg, A. Y., Seifert, H., & Paterson, D. L. (2008). Acinetobacter baumannii: Emergence of a successful pathogen. Clinical Microbiology Reviews, 21, 538–582.
Rafailidis, P. I., Tsigou, E., & Falagas, M. E. (2024). Multidrug-resistant Acinetobacter infections: Clinical outcomes and treatment strategies. Critical Care Reviews, 20(1), 44–52.
Rafailidis, P., Panagopoulos, P., Koutserimpas, C., & Samonis, G. (2024). Current therapeutic approaches for multidrug-resistant and extensively drug-resistant Acinetobacter baumannii infections. Antibiotics, 13(3), 261. https://www.mdpi.com
Raheem Hassooni, H., Ahmed, R. I., Alzubaidy, Z. M., & Alhusseiny, A. H. (2024). Isolation and molecular identification of Acinetobacter baumannii from urinary tract infection in Diyala Province, Iraq. Iranian Journal of Medical Microbiology, 18(3), 200–208. https://ijmm.ir
Rahimzadeh, G., Valadan, R., Rezai, S., Khosravi, M., Larijani, L. V., Sheidaei, S., Hevelaee, E. N., Movahedi, F. S., Rezai, R., & Rezai, M. S. (2024). Evaluation of antibiotic resistance changes in Acinetobacter baumannii in the era of COVID-19 in Northern Iran. Iranian Journal of Microbiology, 16(3), 314. https://www.nih.gov
Rahimzadeh, H., Bahador, A., & Yousefi, M. (2024). Plasmid-mediated antibiotic resistance in Acinetobacter baumannii from burn patients. Journal of Infection and Drug Resistance, 17(2), 123–130.
Saikia, S., Gogoi, I., Oloo, A., Sharma, M., Puzari, M., & Chetia, P. (2024). Co-production of metallo-β-lactamase and OXA-type β-lactamases in carbapenem-resistant Acinetobacter baumannii clinical isolates in North East India. World Journal of Microbiology and Biotechnology, 40(6), 167.
Subasri, B., & Dharaneedharan, S. (2025). Isolation and molecular identification of uropathogenic organisms from patients with UTIs. PG & Research Center of Zoology, 137. https://www.researchgate.net
Subasri, R., & Dharaneedharan, S. (2025). Biochemical profiling of Acinetobacter spp. isolated from burn wound infections. International Journal of Bacteriology and Infection, 9(3), 78–85.
Zack, J. K., Omar, A. N., & Hameed, S. R. (2024). PCR identification of virulence genes and plasmid profiles in Acinetobacter baumannii isolated from burn infections. Journal of Medical Laboratory Research, 18(4), 156–165.
Zack, K. M., Sorenson, T., & Joshi, S. G. (2024). Roles of efflux pump systems and the potential of efflux pump inhibitors in the restoration of antimicrobial susceptibility, with a special reference to Acinetobacter baumannii. Pathogens. https://www.mdpi.com
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 OBAT: Jurnal Riset Ilmu Farmasi dan Kesehatan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.