Modification of Gemifloxacin Drug Antibacterial to Promising Anti-Prostate Cancer PC3 Azomethine Compounds: Synthesis and in Vitro Studies
DOI:
https://doi.org/10.61132/obat.v2i5.665Keywords:
Antibacterial, Antibiotic, Gemifloxacin, CancerAbstract
In this study, we report a novel azomethine derivatives synthesis (H and G) by reacting pure Gemifloxacin drugs with 2-aminobenzaldehyde and 2-methylbenzaldehyde. Spectroscopic techniques, such as FT‐IR spectroscopy, characterized the derivatives (G and H). All the synthesized derivatives (G and H) were evaluated in vitro against microorganisms such as Bacillus subtilis and E. coli by zone inhibition method and screened for antimicrobial activities and anti-Prostate cancer PC3 cell viability cell lines.
Downloads
References
Abbas, A. K., & Jber, N. R. (2020). Synthesis and estimation of biological activity of new oxazepine derivatives. International Journal of Pharmaceutical Research, 12(2), 3750-3758. https://doi.org/10.31838/ijpr/2020.12.02.559
Adepu, S., & Ramakrishna, S. (2021). Controlled drug delivery systems: Current status and future directions. Molecules, 26(19), 5905. https://doi.org/10.3390/molecules26195905
Ahmad, T., et al. (2021). Synthesis of gemifloxacin conjugated silver nanoparticles, their amplified bacterial efficacy against human pathogens and their morphological study via TEM analysis. Artificial Cells, Nanomedicine, and Biotechnology, 49(1), 661-671. https://doi.org/10.1080/21691401.2021.1887791
Alam, M. S., & Lee, D.-U. (2021). Molecular structure, spectral (FT-IR, FT-Raman, UV-Vis, and fluorescent) properties and quantum chemical analyses of azomethine derivative of 4-aminoantipyrine. Journal of Molecular Structure, 1227, 129512. https://doi.org/10.1016/j.molstruc.2020.129512
Alqahtani, M. S., et al. (2021). Advances in oral drug delivery. Frontiers in Pharmacology, 12, 618411. https://doi.org/10.3389/fphar.2021.618411
Bergengren, O., et al. (2023). 2022 update on prostate cancer epidemiology and risk factors—a systematic review. European Urology, 84(2), 191-206. https://doi.org/10.1016/j.eururo.2023.03.016
Cusumano, J. A., et al. (2022). Penicillin plus ceftriaxone versus ampicillin plus ceftriaxone synergistic potential against clinical Enterococcus faecalis blood isolates. Microbiology Spectrum, 10(4), e00621-22. https://doi.org/10.1128/spectrum.00621-22
El-Emam, G. A., et al. (2023). Formulation and microbiological ancillary studies of gemifloxacin proniosomes for exploiting its role against LPS acute pneumonia model. Journal of Drug Delivery Science and Technology, 81, 104053. https://doi.org/10.1016/j.jddst.2022.104053
Elshafie, H. S., et al. (2022). Biochemical characterization of new gemifloxacin Schiff base (GMFX-o-phdn) metal complexes and evaluation of their antimicrobial activity against some phyto- or human pathogens. International Journal of Molecular Sciences, 23(4), 2110. https://doi.org/10.3390/ijms23042110
Gandaglia, G., et al. (2021). Epidemiology and prevention of prostate cancer. European Urology Oncology, 4(6), 877-892. https://doi.org/10.1016/j.euo.2021.06.007
Hassan, H. A., et al. (2022). Pharmacokinetic and pharmacodynamic evaluation of gemifloxacin chitosan nanoparticles as an antibacterial ocular dosage form. Journal of Pharmaceutical Sciences, 111(5), 1497-1508. https://doi.org/10.1016/j.xphs.2022.01.029
Jawad, A. A., & Alabdali, A. J. (2020). Synthesis, characterization and antibacterial activity of some penicillin derivatives. Al-Nahrain Journal of Science, 23(4), 29-34. https://doi.org/10.22401/ajns.23.4.03
Jawad, A. A., et al. (2023). Tetrazole derivatives and role of tetrazole in medicinal chemistry: An article review. Al-Nahrain Journal of Science, 26(1), 1-7. https://doi.org/10.22401/ajns.26.1.01
Kaila, V. R., & Wikström, M. (2021). Architecture of bacterial respiratory chains. Nature Reviews Microbiology, 19(5), 319-330. https://doi.org/10.1038/s41579-021-00503-1
Mohamed, A. A., et al. (2021). Biochemical characterization, phytotoxic effect and antimicrobial activity against some phytopathogens of new gemifloxacin Schiff base metal complexes. Chemistry & Biodiversity, 18(9), e2100365. https://doi.org/10.1002/cbdv.202100365
Muhammad, M. H., et al. (2020). Beyond risk: Bacterial biofilms and their regulating approaches. Frontiers in Microbiology, 11, 928. https://doi.org/10.3389/fmicb.2020.00928
Palmer, J. D., & Foster, K. R. (2022). Bacterial species rarely work together. Science, 376(6593), 581-582. https://doi.org/10.1126/science.abp6400
Qashou, E., et al. (2022). Antiproliferative activities of lipophilic fluoroquinolones-based scaffold against a panel of solid and liquid cancer cell lines. Asian Pacific Journal of Cancer Prevention: APJCP, 23(5), 1529. https://doi.org/10.31557/APJCP.2022.23.5.1529
Rajwa, P., et al. (2024). Outcomes of cytoreductive radical prostatectomy for oligometastatic prostate cancer on prostate-specific membrane antigen positron emission tomography: Results of a multicenter European study. European Urology Oncology, 7(4), 721-734. https://doi.org/10.1016/j.euo.2024.03.007
Sader, H. S., et al. (2022). Antimicrobial activity of ceftaroline and comparator agents against ceftriaxone-nonsusceptible Streptococcus pneumoniae from the United States (2008–2020). Microbial Drug Resistance, 28(9), 935-940. https://doi.org/10.1089/mdr.2022.0120
Sekhoacha, M., et al. (2022). Prostate cancer review: Genetics, diagnosis, treatment options, and alternative approaches. Molecules, 27(17), 5730. https://doi.org/10.3390/molecules27175730
Shamim, S., et al. (2022). Gemifloxacin-transition metal complexes as therapeutic candidates: Antimicrobial, antifungal, anti-enzymatic, and docking studies of newly synthesized complexes. Heliyon, 8(8), e10472. https://doi.org/10.1016/j.heliyon.2022.e10472
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 OBAT: Jurnal Riset Ilmu Farmasi dan Kesehatan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.