DNA Sequencing And Phylogenic Tree Analysis Of 16S Rrna And Bla-Oxa-50 Genes Of Carbapenem Resistant Pseudomonas Aeruginosa In Diwanyah City/ Iraq

Authors

  • Ali Sabri Jabbar University of Al-Qadisiyah
  • Ahmed Majeed Abdzaid University of Al-Qadisiyah

DOI:

https://doi.org/10.61132/obat.v2i4.516

Keywords:

P. aeruginosa, carbapenem resistance, 16S rRNA, blaOXA-50, phylogenetic tree

Abstract

Pseudomonas aeruginosa is a major nosocomial pathogen known for its multidrug resistance, including carbapenems. This study aimed to investigate the prevalence of carbapenem resistance in P. aeruginosa of clinical sources and sequencing of 16S rRNA and blaOXA-50 genes Methods: A total of 53 P. aeruginosa isolates from burn, wound, urinary tract, and ear infections were analyzed. Antibiotic susceptibility testing identified carbapenem-resistant isolates. Polymerase Chain Reaction (PCR) detected 16S rRNA and blaOXA-50 genes, followed by DNA sequencing and phylogenetic analysis of 16S rRNA. Results: Among the isolates, 20 (37.73%) originated from wounds, 16 (30.19%) from burns, 10 (18.9%) from urinary tracts, and 7 (13.20%) from ears. Notably, 12 isolates (22.64%) exhibited carbapenem resistance. All carbapenem-resistant isolates harbored both 16S rRNA and blaOXA-50 genes. 16S rRNA sequencing demonstrated 99.66% homology to known P. aeruginosa strains, further confirmed by phylogenetic analysis. The blaOXA-50 gene displayed high sequence identity (98%-100%) with isolates from Russia, suggesting a potential clonal relationship. Conclusion: A moderate prevalence of carbapenem-resistant P. aeruginosa was revealed by this study and based on 16S rRNA and blaOXA-50 genes sequencing, these strains offered a high genetic similarity compared to the global strains. Further investigation is required to determine the role of blaOXA-50 carbapenem resistance in this bacterium.

Downloads

Download data is not yet available.

References

Ahmed, O. B. (2022). Detection of antibiotic resistance genes in Pseudomonas aeruginosa by whole genome sequencing. Infection and Drug Resistance, 6703–6709.

Al-Mohammed, T. A., & Mahmood, H. M. (2024). Carbapenem Resistance Related with Biofilm Formation and Pilin Genes in Clinical Pseudomonas aeruginosa Isolates. Iraqi Journal of Pharmaceutical Sciences (P-ISSN 1683-3597 E-ISSN 2521-3512), 33(1), 72–78.

Al-Saffar, M. F., & Jarallah, E. M. (2019). Isolation and characterization of Pseudomonas aeruginosa from Babylon province. Biochemical & Cellular Archives, 19(1).

Al Fahadawi, M. A., Al Obadi, W. I., & Hasan, A. S. (2019). Antibiogram of Pseudomonas aeruginosa Isolated from Burn& Wound Infections Among Inpatients and Outpatients Attending to Ramadi Teaching Hospital in Ramadi, Iraq. Egyptian Academic Journal of Biological Sciences, G. Microbiology, 11(1), 13–22.

Alhazmi, A. (2015). Pseudomonas aeruginosa-pathogenesis and pathogenic mechanisms. International Journal of Biology, 7(2), 44.

Andrews, J. M. (2009). BSAC standardized disc susceptibility testing method (version 8). Journal of Antimicrobial Chemotherapy, 64(3), 454–489.

Campana, E. H., Xavier, D. E., Petrolini, F. V.-B., Cordeiro-Moura, J. R., Araujo, M. R. E. de, & Gales, A. C. (2017). Carbapenem-resistant and cephalosporin-susceptible: a worrisome phenotype among Pseudomonas aeruginosa clinical isolates in Brazil. Brazilian Journal of Infectious Diseases, 21(1), 57–62.

Drancourt, M., Bollet, C., Carlioz, A., Martelin, R., Gayral, J.-P., & Raoult, D. (2000). 16S ribosomal DNA sequence analysis of a large collection of environmental and clinical unidentifiable bacterial isolates. Journal of Clinical Microbiology, 38(10), 3623–3630.

Feng, W., Sun, F., Wang, Q., Xiong, W., Qiu, X., Dai, X., & Xia, P. (2017). Epidemiology and resistance characteristics of Pseudomonas aeruginosa isolates from the respiratory department of a hospital in China. Journal of Global Antimicrobial Resistance, 8, 142–147.

Girlich, D., Naas, T., & Nordmann, P. (2004). Biochemical characterization of the naturally occurring oxacillinase OXA-50 of Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 48(6), 2043–2048.

Institute, C. and L. S. (2017). Performance standards for antimicrobial susceptibility testing. In CLSI supplement M100. Clinical and Laboratory Standards Institute Wayne, PA.

Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549.

Meletis, G., Exindari, M., Vavatsi, N., Sofianou, D., & Diza, E. (2012). Mechanisms responsible for the emergence of carbapenem resistance in Pseudomonas aeruginosa. Hippokratia, 16(4), 303.

Oumeri, M. M. Q., & Yassin, N. A. (2021). molecular characterization of some carbapenem-resistance genes among Pseudomonas aeruginosa isolated from wound and burn infections in Duhok city, Iraq. Journal of Duhok University, 24(1), 136–144.

Petrova, A., Feodorova, Y., Miteva-Katrandzhieva, T., Petrov, M., & Murdjeva, M. (2019). First detected OXA-50 carbapenem-resistant clinical isolates Pseudomonas aeruginosa from Bulgaria and interplay between the expression of main efflux pumps, OprD and intrinsic AmpC. Journal of Medical Microbiology, 68(12), 1723–1731.

Peykov, S., & Strateva, T. (2023). Whole-genome sequencing-based resistome analysis of nosocomial multidrug-resistant non-fermenting Gram-negative pathogens from the Balkans. Microorganisms, 11(3), 651.

Polse, R. F., Khalid, H. M., & Mero, W. M. S. (2024). Molecular Identification and Detection of Virulence Genes among Pseudomonas aeruginosa Isolated from Burns Infections. Journal of Contemporary Medical Sciences, 10(1).

Poole, K. (2011). Pseudomonas aeruginosa: resistance to the max. Frontiers in Microbiology, 2, 65.

Shilba, A. A., Al-Azzawi, R. H., & Al-Awadi, S. J. (2015). Dissemination of Carbapenem Resistant Pseudomonas aeruginosa among Burn Patients in Karbala Province Iraq. In Iraqi Journal of Science (Vol. 56, Issue 3A, pp. 1850–1857).

Stanton, R. A., Campbell, D., McAllister, G. A., Breaker, E., Adamczyk, M., Daniels, J. B., Lutgring, J. D., Karlsson, M., Schutz, K., & Jacob, J. T. (2022). Whole-genome sequencing reveals diversity of carbapenem-resistant Pseudomonas aeruginosa collected through CDC’s emerging infections program, United States, 2016–2018. Antimicrobial Agents and Chemotherapy, 66(9), e00496-22.

Tamura, K., & Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10(3), 512–526.

Zhapouni, A., Farshad, S., & Alborzi, A. (2009). Pseudomonas aeruginosa: burn infection, treatment and antibacterial resistance.

Published

2024-07-02

How to Cite

Ali Sabri Jabbar, & Ahmed Majeed Abdzaid. (2024). DNA Sequencing And Phylogenic Tree Analysis Of 16S Rrna And Bla-Oxa-50 Genes Of Carbapenem Resistant Pseudomonas Aeruginosa In Diwanyah City/ Iraq. OBAT: Jurnal Riset Ilmu Farmasi Dan Kesehatan, 2(4), 95–104. https://doi.org/10.61132/obat.v2i4.516