Amino Acids: Metabolism, Functions, and Their Role in Health and Disease Management
DOI:
https://doi.org/10.61132/obat.v3i4.1432Keywords:
Amino Acids, Branched-Chain Amino Acids, Cancer Treatment, Diseases, Insulin Resistance, Metabolic HealthAbstract
Abstract. Amino acids are indispensable components of human metabolism, playing essential roles in protein
synthesis, energy production, and cellular regulation. Branched-chain amino acids (BCAAs)-leucine, isoleucine,
and valine—are particularly significant due to their involvement in muscle repair, metabolic signaling, and
insulin sensitivity. While BCAAs are vital under normal physiological conditions, multiple studies have shown
that elevated plasma BCAA levels are linked to insulin resistance, obesity, and type 2 diabetes. This association
has led researchers to investigate whether these elevations are a cause or consequence of metabolic
dysfunction. Recent findings have revealed that impaired BCAA catabolism in tissues such as adipose and liver
contributes to their accumulation in circulation. If skeletal muscle becomes insulin resistant, it may shift BCAA
metabolism further, exacerbating the imbalance. Moreover, the modulation of specific enzymes and transporters
has been proposed as a therapeutic avenue to mimic the beneficial effects of dietary protein restriction.
Although several mechanisms have been proposed, including mTOR activation, fatty acid oxidation
interference, and altered neurotransmitter synthesis, no single pathway fully explains BCAA-induced metabolic
disturbances. Therefore, a comprehensive understanding of amino acid metabolism is crucial, particularly if
dietary and pharmacological interventions are to be optimized for preventing or treating age-related and
metabolic diseases.
Downloads
References
Ahmad, I., Ahmed, I., Fatma, S., & Peres, H. (2021). Role of branched‐chain amino acids on growth, physiology and metabolism of different fish species: A review. Aquaculture Nutrition, 27(5), 1270-1289.
Alagawany, M., Elnesr, S. S., Farag, M. R., Tiwari, R., Yatoo, M. I., Karthik, K., . . . Dhama, K. (2021). Nutritional significance of amino acids, vitamins and minerals as nutraceuticals in poultry production and health–a comprehensive review. Veterinary Quarterly, 41(1), 1-29.
Aquilani, R., Zuccarelli, G. C., Maestri, R., Boselli, M., Dossena, M., Baldissarro, E., . . . Verri, M. (2021). Essential amino acid supplementation is associated with reduced serum C-reactive protein levels and improved circulating lymphocytes in post-acute inflamed elderly patients. International journal of immunopathology and pharmacology, 35, 20587384211036823.
Arany, Z., & Neinast, M. (2018). Branched chain amino acids in metabolic disease. Current Diabetes Reports, 18, 1-8.
Baakhtari, M., Imaizumi, N., Kida, T., Yanagita, T., Ramah, A., Ahmadi, P., . . . Tsuzuki, N. (2022). Effects of branched-chain amino acids on immune status of young racing horses. Journal of Veterinary Medical Science, 84(4), 558-565.
Bollinger, E., Peloquin, M., Libera, J., Albuquerque, B., Pashos, E., Shipstone, A., . . . Clasquin, M. (2022). BDK inhibition acts as a catabolic switch to mimic fasting and improve metabolism in mice. Molecular metabolism, 66, 101611.
Chevli, P. A., Freedman, B. I., Hsu, F.-C., Xu, J., Rudock, M. E., Ma, L., . . . Shapiro, M. D. (2021). Plasma metabolomic profiling in subclinical atherosclerosis: the Diabetes Heart Study. Cardiovascular diabetology, 20, 1-12.
Choi, B. H., Hyun, S., & Koo, S.-H. (2024). The role of BCAA metabolism in metabolic health and disease. Experimental & Molecular Medicine, 56(7), 1552-1559.
Cuomo, P., Capparelli, R., Iannelli, A., & Iannelli, D. (2022). Role of branched-chain amino acid metabolism in type 2 diabetes, obesity, cardiovascular disease and non-alcoholic fatty liver disease. International journal of molecular sciences, 23(8), 4325.
David, J., Dardevet, D., Mosoni, L., Savary-Auzeloux, I., & Polakof, S. (2019). Impaired skeletal muscle branched-chain amino acids catabolism contributes to their increased circulating levels in a non-obese insulin-resistant fructose-fed rat model. Nutrients, 11(2), 355.
De Bandt, J.-P., Coumoul, X., & Barouki, R. (2022). Branched-chain amino acids and insulin resistance, from protein supply to diet-induced obesity. Nutrients, 15(1), 68.
Elsamman, K. (2024). Role of Branched-Chain Amino Acids in Traumatic Brain Injury. In Nutrition and Traumatic Brain Injury (TBI) From Bench to Bedside (pp. 103-149): Springer.
Fabi, J. P. (2024). The connection between gut microbiota and its metabolites with neurodegenerative diseases in humans. Metabolic Brain Disease, 39(5), 967-984.
Fu, Y., Wang, Y., Ren, H., Guo, X., & Han, L. (2024). Branched-chain amino acids and the risks of dementia, Alzheimer’s disease, and Parkinson’s disease. Frontiers in Aging Neuroscience, 16, 1369493.
Gannaban, R. B. (2023). Role of the autonomic nervous system in the regulation of branched-chain amino acid (BCAA) metabolism in the liver.
Javed, K., & Bröer, S. (2019). Mice lacking the intestinal and renal neutral amino acid transporter SLC6A19 demonstrate the relationship between dietary protein intake and amino acid malabsorption. Nutrients, 11(9), 2024.
Ježek, P. (2025). Physiological Fatty Acid-Stimulated Insulin Secretion and Redox Signaling Versus Lipotoxicity. Antioxidants & Redox Signaling.
Jonsson, W. O., Margolies, N. S., & Anthony, T. G. (2019). Dietary sulfur amino acid restriction and the integrated stress response: mechanistic insights. Nutrients, 11(6), 1349.
Khadka, Y. R. (2021). Amino acid-essentiality to human body. Patan Pragya, 8(01), 196-206.
Kim, W. K., Singh, A. K., Wang, J., & Applegate, T. (2022). Functional role of branched chain amino acids in poultry: a review. Poultry science, 101(5), 101715.
Kitada, M., Ogura, Y., Suzuki, T., Monno, I., Kanasaki, K., Watanabe, A., & Koya, D. (2018). A low-protein diet exerts a beneficial effect on diabetic status and prevents diabetic nephropathy in Wistar fatty rats, an animal model of type 2 diabetes and obesity. Nutrition & Metabolism, 15, 1-11.
Kondaveeti, S. B., Naseem, S., Hemalatha, G., & Marwaha, P. (2024). Basic concepts of biochemistry: Academic Guru Publishing House.
Lee, S., Olsen, T., Vinknes, K. J., Refsum, H., Gulseth, H. L., Birkeland, K. I., & Drevon, C. A. (2018). Plasma sulphur-containing amino acids, physical exercise and insulin sensitivity in overweight dysglycemic and normal weight normoglycemic men. Nutrients, 11(1), 10.
Li, P., & Wu, G. (2022). Important roles of amino acids in immune responses. British Journal of Nutrition, 127(3), 398-402.
Ling, Z.-N., Jiang, Y.-F., Ru, J.-N., Lu, J.-H., Ding, B., & Wu, J. (2023). Amino acid metabolism in health and disease. Signal transduction and targeted therapy, 8(1), 345.
Liu, R., Zhang, L., & You, H. (2023). Insulin Resistance and impaired branched-chain amino acid metabolism in Alzheimer’s Disease. Journal of Alzheimer’s Disease, 93(3), 847-862.
Malik, D., Narayanasamy, N., Pratyusha, V., Thakur, J., & Sinha, N. (2023). Dietary Proteins and Health. In Textbook of Nutritional Biochemistry (pp. 161-192): Springer.
Mann, G., Mora, S., Madu, G., & Adegoke, O. A. (2021). Branched-chain amino acids: catabolism in skeletal muscle and implications for muscle and whole-body metabolism. Frontiers in Physiology, 12, 702826.
Mansoori, S., Ho, M. Y. m., Ng, K. K. w., & Cheng, K. K. y. (2025). Branched‐chain amino acid metabolism: Pathophysiological mechanism and therapeutic intervention in metabolic diseases. Obesity Reviews, 26(2), e13856.
Mauvais-Jarvis, F. (2024). Sex differences in energy metabolism: natural selection, mechanisms and consequences. Nature Reviews Nephrology, 20(1), 56-69.
Melnik, B. C. (2021). Lifetime impact of cow’s milk on overactivation of mTORC1: From fetal to childhood overgrowth, acne, diabetes, cancers, and neurodegeneration. Biomolecules, 11(3), 404.
Mrozek, W., Socha, J., Sidorowicz, K., Skrok, A., Syrytczyk, A., Piątkowska-Chmiel, I., & Herbet, M. (2023). Pathogenesis and treatment of depression: role of diet in prevention and therapy. Nutrition, 115, 112143.
Olsen, T., Øvrebø, B., Turner, C., Bastani, N. E., Refsum, H., & Vinknes, K. J. (2018). Combining dietary sulfur amino acid restriction with polyunsaturated fatty acid intake in humans: a randomized controlled pilot trial. Nutrients, 10(12), 1822.
Pabla, P. (2021). Development of a liquid chromatography-mass spectrometry method to investigate branched chain amino acid and acylcarnitine metabolism in type 2 diabetes. University of Nottingham,
Plotkin, D. L., Delcastillo, K., Van Every, D. W., Tipton, K. D., Aragon, A. A., & Schoenfeld, B. J. (2021). Isolated leucine and branched-chain amino acid supplementation for enhancing muscular strength and hypertrophy: A narrative review. International journal of sport nutrition and exercise metabolism, 31(3), 292-301.
Qin, C., Yang, G., Wei, Q., Xin, H., Ding, J., & Chen, X. (2024). Multidimensional Role of Amino Acid Metabolism in Immune Regulation: From Molecular Mechanisms to Therapeutic Strategies. Chemical Research in Chinese Universities, 1-14.
Ragni, M., Fenaroli, F., Ruocco, C., Segala, A., D’Antona, G., Nisoli, E., & Valerio, A. (2023). A balanced formula of essential amino acids promotes brain mitochondrial biogenesis and protects neurons from ischemic insult. Frontiers in Neuroscience, 17, 1197208.
Rehman, S. U., Ali, R., Zhang, H., Zafar, M. H., & Wang, M. (2023). Research progress in the role and mechanism of Leucine in regulating animal growth and development. Frontiers in Physiology, 14, 1252089.
Ribeiro, R. V., Solon-Biet, S. M., Pulpitel, T., Senior, A. M., Cogger, V. C., Clark, X., . . . Blyth, F. M. (2019). Of older mice and men: branched-chain amino acids and body composition. Nutrients, 11(8), 1882.
Russin, K. J., Nair, K. S., Montine, T. J., Baker, L. D., & Craft, S. (2021). Diet effects on cerebrospinal fluid amino acids levels in adults with normal cognition and mild cognitive impairment. Journal of Alzheimer’s Disease, 84(2), 843-853.
Salyha, N. (2023). Regulation of oxidative stress and lipid peroxidation induced by epinephrine: The corrective role of L-Glutamic acid. International Journal of Medicine and Medical Research (IJMMR), 1(9), 32-38.
Shah, H. (2023). Role of AgRP neurons in regulating branched-chain amino acids and its implication on glucose homeostasis.
Srivastava, S., Anbiaee, R., Houshyari, M., Laxmi, Sridhar, S. B., Ashique, S., . . . Akbarnejad, Z. (2025). Amino acid metabolism in glioblastoma pathogenesis, immune evasion, and treatment resistance. Cancer Cell International, 25(1), 89.
Tan, M., Nawaz, M. A., & Buckow, R. (2023). Functional and food application of plant proteins–a review. Food Reviews International, 39(5), 2428-2456.
Terburgh, K., Coetzer, J., Lindeque, J. Z., van der Westhuizen, F. H., & Louw, R. (2021). Aberrant BCAA and glutamate metabolism linked to regional neurodegeneration in a mouse model of Leigh syndrome. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1867(5), 166082.
Tsuda, Y., Yamaguchi, M., Noma, T., Okaya, E., & Itoh, H. (2019). Combined effect of arginine, valine, and serine on exercise-induced fatigue in healthy volunteers: a randomized, double-blinded, placebo-controlled crossover study. Nutrients, 11(4), 862.
Vanweert, F., Schrauwen, P., & Phielix, E. (2022). Role of branched-chain amino acid metabolism in the pathogenesis of obesity and type 2 diabetes-related metabolic disturbances BCAA metabolism in type 2 diabetes. Nutrition & diabetes, 12(1), 35.
Wang, Y., Xiao, J., Jiang, W., Zuo, D., Wang, X., Jin, Y., . . . Dumoulin, D. W. (2021). BCKDK alters the metabolism of non-small cell lung cancer. Translational Lung Cancer Research, 10(12), 4459.
White, P. J., McGarrah, R. W., Herman, M. A., Bain, J. R., Shah, S. H., & Newgard, C. B. (2021). Insulin action, type 2 diabetes, and branched-chain amino acids: a two-way street. Molecular metabolism, 52, 101261.
Xu, E., Ji, B., Jin, K., & Chen, Y. (2023). Branched-chain amino acids catabolism and cancer progression: focus on therapeutic interventions. Frontiers in Oncology, 13, 1220638.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 OBAT: Jurnal Riset Ilmu Farmasi dan Kesehatan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.