Chemical Productions and Immunological Assessments of Cancer Vaccines According to Α-Galactosylceramide and Ganglioside Antigen

Authors

  • Noor Abd Al-Zahra Ali Dentist College Iraqi University
  • Aysar Ahmed Ali Baghdad University
  • Khawla Abdulkader Ossama Dentist College Iraqi University

DOI:

https://doi.org/10.61132/obat.v3i3.1227

Keywords:

α-galactosylceramide, ganglioside antigen, cancer, chemical productions of cancer vaccines, immunological assessments of cancer vaccines

Abstract

iNKT cells, sometimes known as the immune system's "Swiss Army knife," have become key components of cancer vaccination treatments. Glycolipids that activate iNKT cells, including α-galactosylceramide (αGalCer), have been used to create self-adjuvanting anti-tumor vaccinations and can boost the immune response to co-delivered cancer antigens. The chemicals synthesis of ganglioside antigens, specifically (Neu5Gc) GM3 and GM3 antigen, and conjugations to αGalCer, and packaging into liposome as effective platforms for their in vivo deliverying are the main topics of this work. In mouse and human cell experiments, liposome containing, (Neu5Gc) GM3-αGalCer, GM3-αGalCer, and equimolar quantities of conjugates have thoroughly described and their capacities to activate iNKT cell has verified ex vivo. All subclasses of IgG antibodies were produced as a result of the candidates' potential to generate both TH1 and TH2 cytokines, according to in vivo immunization tests. Interestingly, this study shows serum antibody produced against the TACA were cross-reactive, both when they were produced separately and together. If tumor-selective antigens is selected, the ensuing antibodies response can be wider than expected, which has implications for future vaccine formulations.

Downloads

Download data is not yet available.

References

Ali, N. A. al-Z., Al-Qadoori, S. A., Abbas, M. I., & Khorsheed, O. A. (2024). Relationship of Celiac Disease with Interleukin 10, Igg, IgA, Progesterone and Oestrogen Hormones. Journal of Natural Science, Biology and Medicine, 15(3), 424.

Banchet-Cadeddu, A., Hénon, E., Dauchez, M., Renault, J.-H., Monneaux, F., & Haudrechy, A. (2011). The stimulating adventure of KRN 7000. Organic & Biomolecular Chemistry, 9(9), 3080–3104.

Bashir, S., Fezeu, L. K., Leviatan Ben-Arye, S., Yehuda, S., Reuven, E. M., Szabo de Edelenyi, F., Fellah-Hebia, I., Le Tourneau, T., Imbert-Marcille, B. M., & Drouet, E. B. (2020). Association between Neu5Gc carbohydrate and serum antibodies against it provides the molecular link to cancer: French NutriNet-Santé study. BMC Medicine, 18, 1–19.

Bedard, M., Salio, M., & Cerundolo, V. (2017). Harnessing the power of invariant natural killer T cells in cancer immunotherapy. Frontiers in Immunology, 8, 1829.

Borg, N. A., Wun, K. S., Kjer-Nielsen, L., Wilce, M. C. J., Pellicci, D. G., Koh, R., Besra, G. S., Bharadwaj, M., Godfrey, D. I., & McCluskey, J. (2007). CD1d–lipid-antigen recognition by the semi-invariant NKT T-cell receptor. Nature, 448(7149), 44–49.

Brewer, J. M., Tetley, L., Richmond, J., Liew, F. Y., & Alexander, J. (1998). Lipid vesicle size determines the Th1 or Th2 response to entrapped antigen. The Journal of Immunology, 161(8), 4000–4007.

Brigl, M., & Brenner, M. B. (2004). CD1: antigen presentation and T cell function. Annu. Rev. Immunol., 22(1), 817–890.

Broecker, F., Götze, S., Hudon, J., Rathwell, D. C. K., Pereira, C. L., Stallforth, P., Anish, C., & Seeberger, P. H. (2018). Synthesis, liposomal formulation, and immunological evaluation of a minimalistic carbohydrate-α-GalCer vaccine candidate. Journal of Medicinal Chemistry, 61(11), 4918–4927.

Cavallari, M., Stallforth, P., Kalinichenko, A., Rathwell, D. C. K., Gronewold, T. M. A., Adibekian, A., Mori, L., Landmann, R., Seeberger, P. H., & De Libero, G. (2014). A semisynthetic carbohydrate-lipid vaccine that protects against S. pneumoniae in mice. Nature Chemical Biology, 10(11), 950–956.

Cheng, J. M. H., Chee, S. H., Dölen, Y., Verdoes, M., Timmer, M. S. M., & Stocker, B. L. (2019). An efficient synthesis of a 6 ″-BODIPY-α-Galactosylceramide probe for monitoring α-Galactosylceramide uptake by cells. Carbohydrate Research, 486, 107840.

Coffman, R. L., Seymour, B. W. P., Lebman, D. A., Hiraki, D. D., Christiansen, J. A., Shrader, B., Cherwinski, H. M., Savelkoul, H. F. J., Finkelman, F. D., & Bond, M. W. (1988). The role of helper T cell products in mouse B cell differentiation and isotype regulation. Immunological Reviews, 102(1), 5–28.

Dorvignit, D., Boligan, K. F., Relova-Hernández, E., Clavell, M., López, A., Labrada, M., Simon, H.-U., López-Requena, A., Mesa, C., & von Gunten, S. (2019). Antitumor effects of the GM3 (Neu5Gc) ganglioside-specific humanized antibody 14F7hT against Cmah-transfected cancer cells. Scientific Reports, 9(1), 9921.

Du, W., & Gervay-Hague, J. (2005). Efficient synthesis of α-galactosyl ceramide analogues using glycosyl iodide donors. Organic Letters, 7(10), 2063–2065.

Figueroa-Pérez, S., & Schmidt, R. R. (2000). Total synthesis of α-galactosyl cerebroside. Carbohydrate Research, 328(2), 95–102.

Girardi, E., & Zajonc, D. M. (2012). Molecular basis of lipid antigen presentation by CD 1d and recognition by natural killer T cells. Immunological Reviews, 250(1), 167–179.

Heimburg-Molinaro, J., Lum, M., Vijay, G., Jain, M., Almogren, A., & Rittenhouse-Olson, K. (2011). Cancer vaccines and carbohydrate epitopes. Vaccine, 29(48), 8802–8826.

Kawano, T., Cui, J., Koezuka, Y., Toura, I., Kaneko, Y., Sato, H., Kondo, E., Harada, M., Koseki, H., & Nakayama, T. (1998). Natural killer-like nonspecific tumor cell lysis mediated by specific ligand-activated Vα14 NKT cells. Proceedings of the National Academy of Sciences, 95(10), 5690–5693.

King, L. A., Lameris, R., De Gruijl, T. D., & Van der Vliet, H. J. (2018). CD1d-invariant natural killer T cell-based cancer immunotherapy: α-galactosylceramide and beyond. Frontiers in Immunology, 9, 1519.

Koch, M., Stronge, V. S., Shepherd, D., Gadola, S. D., Mathew, B., Ritter, G., Fersht, A. R., Besra, G. S., Schmidt, R. R., & Jones, E. Y. (2005). The crystal structure of human CD1d with and without α-galactosylceramide. Nature Immunology, 6(8), 819–826.

Lantz, O., & Bendelac, A. (1994). An invariant T cell receptor alpha chain is used by a unique subset of major histocompatibility complex class I-specific CD4+ and CD4-8-T cells in mice and humans. Journal of Experimental Medicine, 180(3), 1097–1106.

Leite-de-Moraes, M. C., Hameg, A., Arnould, A., Machavoine, F., Koezuka, Y., Schneider, E., Herbelin, A., & Dy, M. (1999). A distinct IL-18-induced pathway to fully activate NK T lymphocytes independently from TCR engagement. The Journal of Immunology, 163(11), 5871–5876.

Livingston, P. O. (1995). Approaches to augmenting the immunogenicity of melanoma gangliosides: from whole melanoma cells to ganglioside-KLH conjugate vaccines. Immunological Reviews, 145, 147–166.

Ma, W., Bi, J., Zhao, C., Gao, Y., & Zhang, G. (2020). Design, synthesis and biological evaluation of acridone glycosides as selective BChE inhibitors. Carbohydrate Research, 491, 107977.

Magaud, D., Grandjean, C., Doutheau, A., Anker, D., Shevchik, V., Cotte-Pattat, N., & Robert-Baudouy, J. (1998). Synthesis of the two monomethyl esters of the disaccharide 4-O-α-D-galacturonosyl-D-galacturonic acid and of precursors for the preparation of higher oligomers methyl uronated in definite sequences. Carbohydrate Research, 314(3–4), 189–199.

Manimala, J. C., Roach, T. A., Li, Z., & Gildersleeve, J. C. (2007). High-throughput carbohydrate microarray profiling of 27 antibodies demonstrates widespread specificity problems. Glycobiology, 17(8), 17C-23C.

Marsden, D. M., Nicholson, R. L., Ladlow, M., & Spring, D. R. (2009). 3D small-molecule microarrays. Chemical Communications, 46, 7107–7109.

Meijer, A., & Ellervik, U. (2002). Study of interhalogens/silver trifluoromethanesulfonate as promoter systems for high-yielding sialylations. The Journal of Organic Chemistry, 67(21), 7407–7412.

Mori, K., Shikichi, Y., Shankar, S., & Yew, J. Y. (2010). Pheromone synthesis. Part 244: Synthesis of the racemate and enantiomers of (11Z, 19Z)-CH503 (3-acetoxy-11, 19-octacosadien-1-ol), a new sex pheromone of male Drosophila melanogaster to show its (S)-isomer and racemate as bioactive. Tetrahedron, 66(35), 7161–7168.

Padler-Karavani, V., Hurtado-Ziola, N., Pu, M., Yu, H., Huang, S., Muthana, S., Chokhawala, H. A., Cao, H., Secrest, P., & Friedmann-Morvinski, D. (2011). Human xeno-autoantibodies against a non-human sialic acid serve as novel serum biomarkers and immunotherapeutics in cancer. Cancer Research, 71(9), 3352–3363.

Park, J.-J., Lee, J. H., Ghosh, S. C., Bricard, G., Venkataswamy, M. M., Porcelli, S. A., & Chung, S.-K. (2008). Synthesis of all stereoisomers of KRN7000, the CD1d-binding NKT cell ligand. Bioorganic & Medicinal Chemistry Letters, 18(14), 3906–3909.

Park, J., Wu, D. Y., Prendes, M., Lu, S. X., Ragupathi, G., Schrantz, N., & Chapman, P. B. (2008). Fine specificity of natural killer T cells against GD3 ganglioside and identification of GM3 as an inhibitory natural killer T‐cell ligand. Immunology, 123(1), 145–155.

Schwendener, R. A. (2014). Liposomes as vaccine delivery systems: a review of the recent advances. Ther Adv Vaccines 2: 159–182.

Speir, M., Hermans, I. F., & Weinkove, R. (2017). Engaging natural killer T cells as ‘Universal Helpers’ for vaccination. Drugs, 77(1), 1–15.

Verbeke, R., Lentacker, I., Breckpot, K., Janssens, J., Van Calenbergh, S., De Smedt, S. C., & Dewitte, H. (2019). Broadening the message: a nanovaccine co-loaded with messenger RNA and α-GalCer induces antitumor immunity through conventional and natural killer T cells. ACS Nano, 13(2), 1655–1669.

Wilson, R. M., & Danishefsky, S. J. (2013). A vision for vaccines built from fully synthetic tumor-associated antigens: from the laboratory to the clinic. Journal of the American Chemical Society, 135(39), 14462–14472.

Xia, C., Yao, Q., Schümann, J., Rossy, E., Chen, W., Zhu, L., Zhang, W., De Libero, G., & Wang, P. G. (2006). Synthesis and biological evaluation of α-galactosylceramide (KRN7000) and isoglobotrihexosylceramide (iGb3). Bioorganic & Medicinal Chemistry Letters, 16(8), 2195–2199.

Yin, X.-G., Chen, X.-Z., Sun, W.-M., Geng, X.-S., Zhang, X.-K., Wang, J., Ji, P.-P., Zhou, Z.-Y., Baek, D. J., & Yang, G.-F. (2017). IgG antibody response elicited by a fully synthetic two-component carbohydrate-based cancer vaccine candidate with α-galactosylceramide as built-in adjuvant. Organic Letters, 19(3), 456–459.

Yin, X.-G., Lu, J., Wang, J., Zhang, R.-Y., Wang, X.-F., Liao, C.-M., Liu, X.-P., Liu, Z., & Guo, J. (2021). Synthesis and evaluation of liposomal anti-GM3 cancer vaccine candidates covalently and noncovalently adjuvanted by αGalCer. Journal of Medicinal Chemistry, 64(4), 1951–1965.

Yu, B., & Tao, H. (2001). Glycosyl trifluoroacetimidates. Part 1: Preparation and application as new glycosyl donors. Tetrahedron Letters, 42(12), 2405–2407.

Zajonc, D. M., Cantu III, C., Mattner, J., Zhou, D., Savage, P. B., Bendelac, A., Wilson, I. A., & Teyton, L. (2005). Structure and function of a potent agonist for the semi-invariant natural killer T cell receptor. Nature Immunology, 6(8), 810–818.

Zhang, Y., Springfield, R., Chen, S., Li, X., Feng, X., Moshirian, R., Yang, R., & Yuan, W. (2019). α-GalCer and iNKT cell-based cancer immunotherapy: realizing the therapeutic potentials. Frontiers in Immunology, 10, 1126.

Downloads

Published

2025-03-14

How to Cite

Noor Abd Al-Zahra Ali, Aysar Ahmed Ali, & Khawla Abdulkader Ossama. (2025). Chemical Productions and Immunological Assessments of Cancer Vaccines According to Α-Galactosylceramide and Ganglioside Antigen. OBAT: Jurnal Riset Ilmu Farmasi Dan Kesehatan, 3(3), 09–27. https://doi.org/10.61132/obat.v3i3.1227

Similar Articles

<< < 1 2 3 > >> 

You may also start an advanced similarity search for this article.