Artikel Review: Dampak Limbah Farmasi terhadap Lingkungan dan Upaya Pengelolaannya di Industri

Authors

  • Muhammad Rezky Wahyudi Universitas Muhammadiyah Banjarmasin
  • Hidayatur Rizky Universitas Muhammadiyah Banjarmasin
  • Ufaul Apriani Universitas Muhammadiyah Banjarmasin
  • Nor Latifah Universitas Muhammadiyah Banjarmasin

DOI:

https://doi.org/10.61132/vitamin.v3i3.1442

Keywords:

pharmaceutical waste, environment, waste management

Abstract

The pharmaceutical industry produces solid, liquid, and gaseous waste containing active pharmaceutical ingredients that pose serious environmental risks. These wastes can disrupt ecosystems and accelerate antimicrobial resistance. This systematic literature review examines pharmaceutical waste concepts, classifications, characteristics, and relevant regulatory frameworks. It also addresses ecotoxicological effects on aquatic and terrestrial ecosystems, antibiotic contamination and resistance, water and soil pollution, treatment technologies, industrial policies, and best practices. Findings show that conventional wastewater treatment is largely ineffective at removing pharmaceutical residues, resulting in their presence in surface water, soil, and even drinking water. Compounds such as β-blockers, cytostatics, antibiotics, and hormones harm aquatic life by impairing reproduction and causing mutations. Antibiotic-laden industrial waste contributes to the emergence of resistant bacteria. Recommended treatment methods include biothermal processes, advanced oxidation (e.g., UV/H₂O₂, ozonation), adsorption (activated carbon), coagulation-flocculation, and controlled incineration. Stronger enforcement of hazardous waste regulations (e.g., Government Regulation No. 101/2014, Ministry of Environment and Forestry Regulation No. 56/2015) and adherence to WHO (2025) guidelines are essential. In conclusion, multisectoral collaboration (One Health), improved waste treatment capacity, and adoption of best practices are crucial to preventing pharmaceutical pollution and promoting environmental sustainability.

Downloads

Download data is not yet available.

References

Adeoye, J. B., Tan, Y. H., Lau, S. Y., Tan, Y. Y., Chiong, T., Mubarak, N. M., & Khalid, M. (2024). Advanced oxidation and biological integrated processes for pharmaceutical wastewater treatment: A review. Journal of Environmental Management, 353, 120170.

Ajekiigbe, V. O., Agbo, C. E., Ogieuhi, I. J., Anthony, C. S., Onuigbo, C. S., Falayi, T. A., ... & Bakare, I. S. (2025). The increasing burden of global environmental threats: Role of antibiotic pollution from pharmaceutical wastes in the rise of antibiotic resistance. Discover Public Health, 22(1), 1–10.

Asfaw, A. (2018). Pharmaceutical waste and the environment. In E. Lichtfouse (Ed.), Sustainable water and wastewater processing (pp. 407–429). Elsevier. https://doi.org/10.1016/B978-0-12-813265-6.00014-2

Aus der Beek, T., Weber, F. A., Bergmann, A., Hickmann, S., Ebert, I., Hein, A., & Küster, A. (2016). Pharmaceuticals in the environment—Global occurrences and perspectives. Environmental Toxicology and Chemistry, 35(4), 823–835.

Björklund, E., & Svahn, O. (2021). Total release of 21 indicator pharmaceuticals listed by the Swedish Medical Products Agency from wastewater treatment plants to surface water bodies in the 1.3 million populated County Skåne (Scania), Sweden. Molecules, 27, 77. https://doi.org/10.3390/molecules27010077

Godlewska, K., Jakubus, A., Stepnowski, P., & Paszkiewicz, M. (2021). Impact of environmental factors on the sampling rate of β-blockers and sulfonamides from water by a carbon nanotube-passive sampler. Journal of Environmental Sciences, 101, 413–427. https://doi.org/10.1016/j.jes.2020.08.034

Gworek, B., Kijeńska, M., Wrzosek, J., & Graniewska, M. (2021). Pharmaceuticals in the soil and plant environment: A review. Water, Air, & Soil Pollution, 232(4), 145.

Kementerian Lingkungan Hidup dan Kehutanan. (2015). Peraturan Menteri Lingkungan Hidup dan Kehutanan Republik Indonesia Nomor P.56/Menlhk-Setjen/2015 tentang tata cara dan persyaratan teknis pengelolaan limbah bahan berbahaya dan beracun dari fasilitas pelayanan kesehatan. Jakarta: Kementerian LHK.

Koagouw, W., Arifin, Z., Olivier, G. W. J., & Ciocan, C. (2021). High concentrations of paracetamol in effluent dominated waters of Jakarta Bay, Indonesia. Marine Pollution Bulletin, 169, 112558. https://doi.org/10.1016/j.marpolbul.2021.112558

Kovács, R., Csenki, Z., Bakos, K., Urbányi, B., Horváth, Á., Garaj-Vrhovac, V., et al. (2015). Assessment of toxicity and genotoxicity of low doses of 5-fluorouracil in zebrafish (Danio rerio) two-generation study. Water Research, 77, 201–212. https://doi.org/10.1016/j.watres.2015.03.025

Kusturica, M. P., Jevtic, M., & Trifunovic Ristovski, J. (2022). Minimizing the environmental impact of unused pharmaceuticals: Review focused on prevention. Frontiers in Environmental Science, 10, 1077974. https://doi.org/10.3389/fenvs.2022.1077974

Li, Z., Yu, X., Yu, F., & Huang, X. (2021). Occurrence, sources and fate of pharmaceuticals and personal care products and artificial sweeteners in groundwater. Environmental Science and Pollution Research, 28, 20903–20920. https://doi.org/10.1007/s11356-021-12721-3

Organisation for Economic Co-operation and Development (OECD). (2022). Management of pharmaceutical household waste: Limiting environmental impacts of unused or expired medicine. OECD Publishing.

Organisation for Economic Co-operation and Development (OECD). (2019). Pharmaceutical residues in freshwater: Hazards and policy responses (OECD Studies on Water). OECD Publishing.

Ortúzar, M., Esterhuizen, M., Olicón-Hernández, D. R., González-López, J., & Aranda, E. (2022). Pharmaceutical pollution in aquatic environments: A concise review of environmental impacts and bioremediation systems. Frontiers in Microbiology, 13, 869332. https://doi.org/10.3389/fmicb.2022.869332

Queirós, V., Azeiteiro, U. M., Soares, A. M. V. M., & Freitas, R. (2021). The antineoplastic drugs cyclophosphamide and cisplatin in the aquatic environment – Review. Journal of Hazardous Materials, 412, 125028. https://doi.org/10.1016/j.jhazmat.2020.125028

Rayan, R. A. (2023). Pharmaceutical effluent evokes superbugs in the environment: A call to action. Biosafety and Health, 5(6), 363–371. https://doi.org/10.1016/j.bsheal.2023.10.005

Tóth, A. J., Fózer, D., Mizsey, P., Varbanov, P. S., & Klemeš, J. J. (2022). Physicochemical methods for process wastewater treatment: Powerful tools for circular economy in the chemical industry. Reviews in Chemical Engineering, 39(7), 1123–1151. https://doi.org/10.1515/revce-2021-0094

United Nations Educational, Scientific and Cultural Organization (UNESCO). (2020). Emerging pollutants in water and wastewater. https://en.unesco.org/emergingpollutantsinwaterandwastewater

Vumazonke, S., Khamanga, S. M., & Ngqwala, N. P. (2020). Detection of pharmaceutical residues in surface waters of the Eastern Cape Province. International Journal of Environmental Research and Public Health, 17, 4067. https://doi.org/10.3390/ijerph17114067

World Health Organization. (2025). Safe management of pharmaceutical waste from health care facilities: Global best practices. Geneva, Switzerland: World Health Organization.

Yuspa, S., Latifah, N., & Lestari, Y. P. I. (2024). Review of waste management of solid, liquid, and gaseous in the pharmaceutical industry. Jurnal Cakrawala Ilmiah, 3(12), 3379–3386. https://doi.org/10.36514/jci.v3i12.3379.

Downloads

Published

2025-06-04

How to Cite

Muhammad Rezky Wahyudi, Hidayatur Rizky, Ufaul Apriani, & Nor Latifah. (2025). Artikel Review: Dampak Limbah Farmasi terhadap Lingkungan dan Upaya Pengelolaannya di Industri. Vitamin : Jurnal Ilmu Kesehatan Umum, 3(3), 189–198. https://doi.org/10.61132/vitamin.v3i3.1442

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.